Генрих Альтшуллер - Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач. Страница 3

Наиболее обстоятельные эксперименты провел в 20–30-х годах немецкий психолог К. Дункер. Как и его коллеги, он работал с простыми задачами и головоломками. Предполагалось, что полученные выводы удастся распространить на решение более сложных задач. Между тем многовековая история изобретательства отнюдь не давала тому оснований. Опыт свидетельствует, что решение простых задач доступно очень многим. Не имеет практического значения, будет ли получено решение со второй или с десятой попытки; вся проблема – в неясности механизма решения трудных задач ценой в тысячи проб. При решении таких задач проявляется что-то еще кроме перебора вариантов. Нередко решение сложной задачи оказывается очень простым; не требовалось никаких особых знаний, чтобы найти нужный ответ, но многие пытались – и не могли решить задачу, а какой-то человек ее решил. Как это происходит? Почему это не повторяется? Почему человек, решивший трудную задачу «озарением», беспомощен при решении следующей задачи? Вообще: почему трудны трудные задачи?..

К. Маркс отмечал в «Капитале», что все крупнейшие изобретения сделаны не одним человеком, а «кооперацией современников». В особо трудных случаях задачу постепенно «перемалывают» несколько поколений изобретателей. С конца прошлого века (в особенности после Эдисона) несовершенство метода проб и ошибок стали сознательно компенсировать, сосредоточивая на решении одной задачи усилия многих разработчиков. Обширное «поисковое поле» делят на небольшие участки, и на каждом участке действуют многочисленные коллективы. Участки становятся все более и более узкими, а сосредоточенные на каждом участке силы – все более значительными…

За 100 лет изучения творчества психологи не поставили ни одного эксперимента по решению крупной задачи «кооперацией современников». Лишь в последние годы появились сведения об опытах с небольшими, но все-таки реальными изобретательскими задачами.

Вот одна из таких задач.

Задача 1.2. Авиационный высотомер (альтиметр) работает, измеряя падение давления с высотой. В сущности, это обычный барометр, но шкала градуирована в единицах длины (высоты). Высотомер имеет две круговые шкалы (рис. 1): большая шкала показывает метры, малая – километры. Пилоты часто путали шкалы. Поэтому инженеры-психологи решили установить новый высотомер, на циферблате которого километры показывались бы на горизонтальной шкале, а метры – на круговой (рис. 2). Спроектировать такой прибор было поручено высококвалифицированным инженерам. С задачей они справились, но в результате получился сложный механизм с множеством шестеренок и колесиков. Трение в них было столь велико, что точность нового прибора оказалась сведенной на нет. Все попытки уменьшить число шестеренок ничего не дали. Тогда задача была передана человеку, мало знакомому с такого рода проблемами…

Решение этой задачи действительно не требует никаких специальных знаний. Высотомер в принципе не отличается от манометра, устройство которого описано в учебнике физики для шестого класса: это согнутая в дугу металлическая трубка, один конец ее запаян, а другой подсоединен к объему, в котором измеряют давление. При увеличении давления трубка разгибается, запаянный ее конец приходит в движение, которое с помощью рычагов и шестеренок передается стрелке.

«Записи позволили точно установить, как все происходило. Изобретатель бился над проблемой, подступая к ней с разных сторон, но безуспешно. Он размышлял над ней дни и ночи. Она стала казаться ему неразрешимой. Но упорные поиски продолжались. Они были похожи на какую-то странную игру, в которой изобретатель начал находить удовольствие. Появились галлюцинации, которые неотступно преследовали его. Потом он обнаружил, что проблема совершенно овладела им и он не может не думать о ней. Изобретатель решил как-нибудь развеяться. Однажды он бросил работу и поехал за город, в лес. Осенние листья медленно кружились в воздухе, изобретатель брел вдоль лесной просеки в полузабытьи, какие-то образы мелькали в его уме.

И вдруг перед его мысленным взором возникла непрерывно свивающаяся и развивающаяся пружина высотомера. Неожиданно вопреки воле изобретателя на пружине появилась черная точка, описывающая небольшую дугу по мере того, как пружина свивалась и развивалась. В следующий момент задача была решена: движение точки на пружине и есть та самая горизонтальная линия, которую он так безуспешно искал»[4].

Это – типичное описание творческого процесса. И хотя взята реальная изобретательская задача, наблюдение за ее решением не дает ничего нового. Новые сведения могли быть получены, если бы исследование велось принципиально иначе и в центре внимания оказались бы не субъективные переживания изобретателя, а объективные изменения – переход от одной модели высотомера к другой, от плохой модели, характеризующейся сложной системой передачи от «двигателя» (пружина) к «рабочему органу» (горизонтально перемещающаяся стрелка), к хорошей модели, отличающейся тем, что передача вообще отсутствует: стрелка прямо «замкнута» на пружину (рис. 3). Передачи нет, отсюда – предельная простота устройства, и передача как бы есть – ее функции по совместительству выполняет пружина. Неудачи обусловлены попытками построить хорошую передачу, а ее, оказывается, надо было вообще исключить…

Одно из двух: либо прием «выбрось передачу, поручив ее функции двигателю или рабочему органу» – годится только для этой задачи, либо это общий прием для всех задач или по крайней мере для какого-то достаточно обширного их класса. Первое предположение ведет в тупик, исследование сразу обрывается. Второе предположение приводит к понятию «идеального объекта»: технический объект идеален, если его нет, а функция выполняется. Идеальный объект заведомо лучше любых других объектов – он ничего не стоит, абсолютно надежен (не может сломаться), не создает никаких вредных побочных эффектов (например, шума), не требует ухода и т. д.

Анализ патентного фонда показывает: увеличение степени идеальности технических систем – всеобщая закономерность, хотя передача функции – далеко не единственный путь реализации этой закономерности. Такой вывод мог бы положить начало научной технологии решения задач: если найдена одна закономерность, могут быть найдены и другие. Однако исследователи, как мы видели, остановились там, где, собственно, надо было начать работу. Это типично для всех психологических исследований, изначально ограниченных неверным постулатом, что изобретение – некий чисто психологический процесс: важно, мол, только то, что происходит в голове изобретателя. На самом деле изобретение – закономерный переход технической системы от одного состояния к другому. Опираясь на знание закономерностей развития технических систем, можно планомерно решать задачу, сознательно преодолевая трудности, в том числе психологические.

* * *

В конце 40-х годов мне пришлось разрабатывать холодильный костюм для горноспасателей, действующих при подземных пожарах. Главная трудность состояла в том, что вес охлаждающего вещества (льда, сухого льда, сжиженного аммиака) не должен был превышать 8 кг. А по расчетам требовалось не менее 20 кг. Задача считалась неразрешимой: с физическими расчетами не поспоришь… Но я уже знал надежное правило: техническая система идеальна, когда системы нет, а функция выполняется. Горноспасатель обязательно имеет дыхательный аппарат (это 11–12 кг!). Я предложил скафандр, выполняющий две функции – газовую и тепловую защиту. Скафандр работал на сжиженном воздухе; сначала воздух испарялся и нагревался, поглощая тепло, потом шел на дыхание. Ненужным становился отдельный дыхательный прибор, запас холодильно-дыхательного вещества доходил до 20, даже до 30 кг. В таком скафандре можно ремонтировать раскаленную мартеновскую печь!..

Год спустя мне поручили заняться переносным кислородным генератором. Кислород вырабатывался в нем химически – из перекиси водорода. Получалась горячая парогазовая смесь с большим содержанием пара. Ее охлаждали и осушали, потом кислород использовали для сварки и резки. Предшественники, казалось бы, до предела уменьшили вес холодильных и осушительных устройств: борьба шла за каждый грамм и каждый кубический сантиметр. И все равно холодильно-осушительная система весила в полтора раза больше самого генератора… Мне сказали так: «Посмотри, что можно сделать. Снизить бы вес осушителя на несколько процентов… Времени в обрез – месяц».

Идея решения была найдена мгновенно. Точнее: уверенно получена на основе правила. Надо, чтобы охлаждение парогазовой смеси (и, следовательно, осушение путем конденсации) происходило «без ничего» – за счет поглощения тепла другими системами. Какие близкие системы нуждаются в тепле? Прежде всего, генератор горючего газа, работающий совместно с кислородом. Пусть испарение жидкого горючего идет за счет дарового тепла кислородного генератора. Холодильно-осушительную систему можно вообще убрать! Конструкция генератора горючего газа тоже значительно упрощается: не нужны испаритель, регуляторы, горелка… На расчеты, изготовление опытного образца и испытания потребовалось одиннадцать дней.